Основы теории нейронных сетей


         

Алгоритм обучения однослойного персептрона


Персептрон должен решать задачу классификации по бинарным входным сигналам. Набор входных сигналов будем обозначать

-мерным вектором
. Все элементы вектора являются булевыми переменными (переменными, принимающими значения "Истина" или "Ложь"). Однако иногда полезно оперировать числовыми значениями. Будем считать, что значению "ложь" соответствует числовое значение 0, а значению "Истина" соответствует 1.

Персептроном будем называть устройство, вычисляющее следующую систему функций:

(1)

где

— веса персептрона,
— порог,
— значения входных сигналов, скобки
означают переход от булевых (логических) значений к числовым значениям по правилам, изложенным выше.

Обучение персептрона состоит в подстройке весовых коэффициентов. Пусть имеется набор пар векторов

,
, называемый обучающей выборкой. Будем называть нейронную сеть обученной на данной обучающей выборке, если при подаче на входы сети каждого вектора
на выходах всякий раз получается соответствующий вектор
.

Предложенный Ф.Розенблаттом метод обучения состоит в итерационной подстройке матрицы весов, последовательно уменьшающей ошибку в выходных векторах. Алгоритм включает несколько шагов:

Шаг 0Начальные значения весов всех нейронов
полагаются случайными
Шаг 1Сети предъявляется входной образ
, в результате формируется выходной образ
.
Шаг 2Вычисляется вектор ошибки
, делаемой сетью на выходе. Дальнейшая идея состоит в том, что изменение вектора весовых коэффициентов в области малых ошибок должно быть пропорционально ошибке на выходе и равно нулю, если ошибка равна нулю.
Шаг 3Вектор весов модифицируется по следующей формуле:
. Здесь
— темп обучения.
Шаг 4Шаги 1—3 повторяются для всех обучающих векторов. Один цикл последовательного предъявления всей выборки называется эпохой. Обучение завершается по истечении нескольких эпох: а) когда итерации сойдутся, т.е. вектор весов перестает изменяться, или б) когда полная, просуммированная по всем векторам абсолютная ошибка станет меньше некоторого малого значения.



Содержание  Назад  Вперед





Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий