Основы теории нейронных сетей

       

Переобучение и обобщение


Одна из наиболее серьезных трудностей алгоритма обратного распространения заключается в том, что таким образом мы минимизируем не ту ошибку, которую на самом деле нужно минимизировать, — ошибку, которую можно ожидать от сети, когда ей будут подаваться совершенно новые наблюдения. Иначе говоря, мы хотели бы, чтобы нейронная сеть обладала способностью обобщать

результат на новые наблюдения. В действительности, сеть обучается минимизировать ошибку на обучающем множестве, и в отсутствие идеального и бесконечно большого обучающего множества это совсем не то же самое, что минимизировать "настоящую" ошибку на поверхности ошибок в заранее неизвестной модели явления.

Сильнее всего это различие проявляется в проблеме переобучения, или слишком близкой подгонки. Это явление проще будет продемонстрировать не для нейронной сети, а на примере аппроксимации посредством полиномов, — при этом суть явления абсолютно та же.

Полином (или многочлен) — это выражение, содержащее только константы и целые степени независимой переменной. Графики полиномов могут иметь различную форму, причем чем выше степень многочлена (и, тем самым, чем больше членов в него входит), тем более сложной может быть эта форма. Если у нас есть некоторые данные, мы можем попробовать подогнать к ним полиномиальную кривую (модель) и получить, таким образом, объяснение для имеющейся зависимости. Наши данные могут быть зашумлены, поэтому нельзя считать, что самая лучшая модель задается кривой, которая в точности проходит через все имеющиеся точки. Полином низкого порядка может быть недостаточно гибким средством для аппроксимации данных, в то время как полином высокого порядка может оказаться чересчур гибким и будет точно следовать данным, принимая при этом форму замысловатую и не имеющую никакого отношения к реальной зависимости.

У нейронной сети проблема точно такая же. Сети с большим числом весов моделируют более сложные функции и, следовательно, склонны к переобучению. Сеть же с небольшим числом весов может оказаться недостаточно гибкой для того, чтобы смоделировать имеющуюся зависимость.



Содержание  Назад  Вперед







Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий