Основы теории нейронных сетей



         

Функционирование сети APT в процессе классификации - часть 3


В результате другой нейрон выигрывает соревнование в слое распознавания и другой запомненный образ

P
возвращается в слой сравнения. Если
P
не соответствует
X
, возбужденный нейрон в слое распознавания снова тормозится. Этот процесс повторяется до тех пор, пока не встретится одно из двух событий:

  1. Найден запомненный образ, сходство которого с вектором
    X

    выше уровня параметра сходства, т. е.

    S>\rho
    . Если это происходит, проводится обучающий цикл, в процессе которого модифицируются веса векторов
    T_j
    и
    B_j
    , связанных с возбужденным нейроном в слое распознавания.
  2. Все запомненные образы проверены, определено, что они не соответствуют входному вектору, и все нейроны слоя распознавания заторможены. В этом случае предварительно не распределенный нейрон в распознающем слое выделяется этому образу и его весовые векторы
    B_j

    и

    T_j
    устанавливаются соответствующими новому входному образу.

Проблема производительности. Описанная сеть должна производить последовательный поиск среди всех запомненных образов. В аналоговых реализациях это будет происходить очень быстро; однако, при моделировании на обычных цифровых компьютерах процесс может оказаться очень длительным. Если же сеть APT реализуется на параллельных процессорах, все свертки на распознающем уровне могут вычисляться одновременно. В этом случае поиск может стать очень быстрым.

Время, необходимое для стабилизации сети с латеральным торможением, может быть длительным при моделировании на последовательных цифровых компьютерах. Чтобы выбрать победителя в процессе латерального торможения, все нейроны в слое должны быть вовлечены в одновременные вычисления и передачу. Этот процесс может потребовать проведения большого объема вычислений перед достижением сходимости.




Содержание  Назад  Вперед