Основы теории нейронных сетей




Пример обучения сети АРТ - часть 2


Отсутствующий пиксель в нижней ножке буквы "Е" устанавливает в 0 соответствующую компоненту вектора

C
, заставляя обучающий алгоритм установить этот вес запомненного образа в нуль, тем самым воспроизводя искажения в запомненном образе. Дополнительный изолированный квадрат не изменяет запомненного образа, так как не соответствует единице в запомненном образе.

Четвертым символом является буква "Е" с двумя различными искажениями. Она не соответствует ранее запомненному образу (

S

меньше чем

\rho
), поэтому для ее запоминания выделяется новый нейрон.

Этот пример иллюстрирует важность выбора корректного значения критерия сходства. Если значение критерия слишком велико, большинство образов не будут подтверждать сходство с ранее запомненными и сеть будет выделять новый нейрон для каждого из них. Такой процесс приводит к плохому обобщению в сети, в результате даже незначительные изменения одного образа будут создавать отдельные новые категории; далее количество категорий увеличивается, все доступные нейроны распределяются, и способность системы к восприятию новых данных теряется. Наоборот, если критерий сходства слишком мал, сильно различающиеся образы будут группироваться вместе, искажая запомненный образ, до тех пор, пока в результате не получится очень малое сходство с одним из них.

К сожалению, отсутствует теоретическое обоснование выбора критерия сходства, и в каждом конкретном случае необходимо решить "волевым усилием", какая степень сходства должна быть принята для отнесения образов к одной категории. Границы между категориями часто неясны, и решение задачи для большого набора входных векторов может быть чрезмерно трудным.

Гроссберг предложил процедуру с использованием обратной связи для настройки коэффициента сходства, вносящую, однако, некоторые искажения в результаты классификации как "наказание" за внешнее вмешательство с целью увеличения коэффициента сходства. Такие системы требуют правил оценки корректности для производимой ими классификации.




Содержание  Назад  Вперед